[置顶] 泰晓 RISC-V 实验箱,配套 30+ 讲嵌入式 Linux 系统开发公开课
[置顶] Linux Lab v1.4 升级部分内核到 v6.10,新增泰晓 RISC-V 实验箱支持,新增最小化内核配置支持大幅提升内核编译速度,在单终端内新增多窗口调试功能等Linux Lab 发布 v1.4 正式版,升级部分内核到 v6.10,新增泰晓实验箱支持
[置顶] 泰晓社区近日发布了一款儿童益智版 Linux 系统盘,集成了数十个教育类与益智游戏类开源软件国内首个儿童 Linux 系统来了,既可打字编程学习数理化,还能下棋研究数独提升智力
内核探索:浅谈 Linux 下的 Timer 框架
Tao HongLiang 创作于 2015/04/04
by Tao HongLiang of TinyLab.org 2015/03/29
前言
看着图中的计时器,想一想现实中我们是如何计时的?想一想如果计划用 20 分钟来煮一锅粥都有哪些步骤?
- 在心里记下时钟上 20 分钟的位置。
- 开始煮粥,并按下计时器。
- 重复拿当前时间和 20 分钟比较。如果还没到,继续煮粥。
- 当当前时间到达目标时间 20 分钟后,告诉自己,粥好了可以吃了。
从上面的例子,我们能得到什么?如果抽象并构建一个时钟模型,我们需要哪些东西呢?我想大概是这样:
- 一个单调递增的计数器 counter
- 一个可设置的比较器 comparer
- 当 counter 中的数字增加到等于 comparer 的时候触发中断,告诉你,“粥”好了可以吃了
Linux 下的 Timer 框架
Linux 下的 Timer 框架和上面的例子大致相似,它把一个 Timer 拆分成两部分:Clocksource 和 Clock_event_device。Clocksource 主要包括 counter 等时钟源信息,Clock_event_device 主要包括:设置 comparer,触发中断,中断处理等任务。
Clocksource
Clocksource 最重要的接口是 read counter func,通过此接口,内核可以读取 counter 中的值。完整的 Clocksource 接口定义见 include/linux/clocksource.h。
Clock_event_device
Clock_event_device 部分需要实现如下接口
- 通过 set_next_event 来设置下次时钟中断触发的条件。
- 通过 irq && irq_action 来设置时钟中断触发后要做的事情。
完整的 Clock_event_device 接口定义见 include/linux/clockchips.h
实例展示
以 MIPS R4K Timer 为例,看看具体如何实现:
static cycle_t c0_hpt_read(struct clocksource *cs) { return read_c0_count(); } static struct clocksource clocksource_mips = { .name = "MIPS", .read = c0_hpt_read, .mask = CLOCKSOURCE_MASK(32), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; int __init init_r4k_clocksource(void) { if (!cpu_has_counter || !mips_hpt_frequency) return -ENXIO; /* Calculate a somewhat reasonable rating value */ clocksource_mips.rating = 200 + mips_hpt_frequency / 10000000; clocksource_register_hz(&clocksource_mips, mips_hpt_frequency); return 0; }
static int mips_next_event(unsigned long delta, struct clock_event_device *evt) { unsigned int cnt; int res; cnt = read_c0_count(); cnt += delta; write_c0_compare(cnt); res = ((int)(read_c0_count() - cnt) >= 0) ? -ETIME : 0; return res; } void mips_set_clock_mode(enum clock_event_mode mode, struct clock_event_device *evt) { /* Nothing to do ... */ } DEFINE_PER_CPU(struct clock_event_device, mips_clockevent_device); int cp0_timer_irq_installed; irqreturn_t c0_compare_interrupt(int irq, void *dev_id) { const int r2 = cpu_has_mips_r2_r6; struct clock_event_device *cd; int cpu = smp_processor_id(); /* * Suckage alert: * Before R2 of the architecture there was no way to see if a * performance counter interrupt was pending, so we have to run * the performance counter interrupt handler anyway. */ if (handle_perf_irq(r2)) goto out; /* * The same applies to performance counter interrupts. But with the * above we now know that the reason we got here must be a timer * interrupt. Being the paranoiacs we are we check anyway. */ if (!r2 || (read_c0_cause() & (1 << 30))) { /* Clear Count/Compare Interrupt */ write_c0_compare(read_c0_compare()); cd = &per_cpu(mips_clockevent_device, cpu); cd->event_handler(cd); } out: return IRQ_HANDLED; } struct irqaction c0_compare_irqaction = { .handler = c0_compare_interrupt, .flags = IRQF_PERCPU | IRQF_TIMER, .name = "timer", }; void mips_event_handler(struct clock_event_device *dev) { } /* * FIXME: This doesn't hold for the relocated E9000 compare interrupt. */ static int c0_compare_int_pending(void) { /* When cpu_has_mips_r2, this checks Cause.TI instead of Cause.IP7 */ return (read_c0_cause() >> cp0_compare_irq_shift) & (1ul << CAUSEB_IP); } /* * Compare interrupt can be routed and latched outside the core, * so wait up to worst case number of cycle counter ticks for timer interrupt * changes to propagate to the cause register. */ #define COMPARE_INT_SEEN_TICKS 50 int c0_compare_int_usable(void) { unsigned int delta; unsigned int cnt; #ifdef CONFIG_KVM_GUEST return 1; #endif /* * IP7 already pending? Try to clear it by acking the timer. */ if (c0_compare_int_pending()) { cnt = read_c0_count(); write_c0_compare(cnt); back_to_back_c0_hazard(); while (read_c0_count() < (cnt + COMPARE_INT_SEEN_TICKS)) if (!c0_compare_int_pending()) break; if (c0_compare_int_pending()) return 0; } for (delta = 0x10; delta <= 0x400000; delta <<= 1) { cnt = read_c0_count(); cnt += delta; write_c0_compare(cnt); back_to_back_c0_hazard(); if ((int)(read_c0_count() - cnt) < 0) break; /* increase delta if the timer was already expired */ } while ((int)(read_c0_count() - cnt) <= 0) ; /* Wait for expiry */ while (read_c0_count() < (cnt + COMPARE_INT_SEEN_TICKS)) if (c0_compare_int_pending()) break; if (!c0_compare_int_pending()) return 0; cnt = read_c0_count(); write_c0_compare(cnt); back_to_back_c0_hazard(); while (read_c0_count() < (cnt + COMPARE_INT_SEEN_TICKS)) if (!c0_compare_int_pending()) break; if (c0_compare_int_pending()) return 0; /* * Feels like a real count / compare timer. */ return 1; } int r4k_clockevent_init(void) { unsigned int cpu = smp_processor_id(); struct clock_event_device *cd; unsigned int irq; if (!cpu_has_counter || !mips_hpt_frequency) return -ENXIO; if (!c0_compare_int_usable()) return -ENXIO; /* * With vectored interrupts things are getting platform specific. * get_c0_compare_int is a hook to allow a platform to return the * interrupt number of it's liking. */ irq = MIPS_CPU_IRQ_BASE + cp0_compare_irq; if (get_c0_compare_int) irq = get_c0_compare_int(); cd = &per_cpu(mips_clockevent_device, cpu); cd->name = "MIPS"; cd->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP | CLOCK_EVT_FEAT_PERCPU; clockevent_set_clock(cd, mips_hpt_frequency); /* Calculate the min / max delta */ cd->max_delta_ns = clockevent_delta2ns(0x7fffffff, cd); cd->min_delta_ns = clockevent_delta2ns(0x300, cd); cd->rating = 300; cd->irq = irq; cd->cpumask = cpumask_of(cpu); cd->set_next_event = mips_next_event; cd->set_mode = mips_set_clock_mode; cd->event_handler = mips_event_handler; clockevents_register_device(cd); if (cp0_timer_irq_installed) return 0; cp0_timer_irq_installed = 1; setup_irq(irq, &c0_compare_irqaction); return 0; }
猜你喜欢:
- 我要投稿:发表原创技术文章,收获福利、挚友与行业影响力
- 知识星球:独家 Linux 实战经验与技巧,订阅「Linux知识星球」
- 视频频道:泰晓学院,B 站,发布各类 Linux 视频课
- 开源小店:欢迎光临泰晓科技自营店,购物支持泰晓原创
- 技术交流:Linux 用户技术交流微信群,联系微信号:tinylab
支付宝打赏 ¥9.68元 | 微信打赏 ¥9.68元 | |
请作者喝杯咖啡吧 |