[置顶] 泰晓 RISC-V 实验箱,配套 30+ 讲嵌入式 Linux 系统开发公开课
内核探索:浅谈 Linux 下的 Timer 框架
Tao HongLiang 创作于 2015/04/04
by Tao HongLiang of TinyLab.org 2015/03/29
前言

看着图中的计时器,想一想现实中我们是如何计时的?想一想如果计划用 20 分钟来煮一锅粥都有哪些步骤?
- 在心里记下时钟上 20 分钟的位置。
- 开始煮粥,并按下计时器。
- 重复拿当前时间和 20 分钟比较。如果还没到,继续煮粥。
- 当当前时间到达目标时间 20 分钟后,告诉自己,粥好了可以吃了。
从上面的例子,我们能得到什么?如果抽象并构建一个时钟模型,我们需要哪些东西呢?我想大概是这样:

- 一个单调递增的计数器 counter
- 一个可设置的比较器 comparer
- 当 counter 中的数字增加到等于 comparer 的时候触发中断,告诉你,“粥”好了可以吃了
Linux 下的 Timer 框架
Linux 下的 Timer 框架和上面的例子大致相似,它把一个 Timer 拆分成两部分:Clocksource 和 Clock_event_device。Clocksource 主要包括 counter 等时钟源信息,Clock_event_device 主要包括:设置 comparer,触发中断,中断处理等任务。

Clocksource
Clocksource 最重要的接口是 read counter func,通过此接口,内核可以读取 counter 中的值。完整的 Clocksource 接口定义见 include/linux/clocksource.h。
Clock_event_device
Clock_event_device 部分需要实现如下接口
- 通过 set_next_event 来设置下次时钟中断触发的条件。
- 通过 irq && irq_action 来设置时钟中断触发后要做的事情。
完整的 Clock_event_device 接口定义见 include/linux/clockchips.h
实例展示
以 MIPS R4K Timer 为例,看看具体如何实现:
static cycle_t c0_hpt_read(struct clocksource *cs)
{
return read_c0_count();
}
static struct clocksource clocksource_mips = {
.name = "MIPS",
.read = c0_hpt_read,
.mask = CLOCKSOURCE_MASK(32),
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
int __init init_r4k_clocksource(void)
{
if (!cpu_has_counter || !mips_hpt_frequency)
return -ENXIO;
/* Calculate a somewhat reasonable rating value */
clocksource_mips.rating = 200 + mips_hpt_frequency / 10000000;
clocksource_register_hz(&clocksource_mips, mips_hpt_frequency);
return 0;
}
static int mips_next_event(unsigned long delta,
struct clock_event_device *evt)
{
unsigned int cnt;
int res;
cnt = read_c0_count();
cnt += delta;
write_c0_compare(cnt);
res = ((int)(read_c0_count() - cnt) >= 0) ? -ETIME : 0;
return res;
}
void mips_set_clock_mode(enum clock_event_mode mode,
struct clock_event_device *evt)
{
/* Nothing to do ... */
}
DEFINE_PER_CPU(struct clock_event_device, mips_clockevent_device);
int cp0_timer_irq_installed;
irqreturn_t c0_compare_interrupt(int irq, void *dev_id)
{
const int r2 = cpu_has_mips_r2_r6;
struct clock_event_device *cd;
int cpu = smp_processor_id();
/*
* Suckage alert:
* Before R2 of the architecture there was no way to see if a
* performance counter interrupt was pending, so we have to run
* the performance counter interrupt handler anyway.
*/
if (handle_perf_irq(r2))
goto out;
/*
* The same applies to performance counter interrupts. But with the
* above we now know that the reason we got here must be a timer
* interrupt. Being the paranoiacs we are we check anyway.
*/
if (!r2 || (read_c0_cause() & (1 << 30))) {
/* Clear Count/Compare Interrupt */
write_c0_compare(read_c0_compare());
cd = &per_cpu(mips_clockevent_device, cpu);
cd->event_handler(cd);
}
out:
return IRQ_HANDLED;
}
struct irqaction c0_compare_irqaction = {
.handler = c0_compare_interrupt,
.flags = IRQF_PERCPU | IRQF_TIMER,
.name = "timer",
};
void mips_event_handler(struct clock_event_device *dev)
{
}
/*
* FIXME: This doesn't hold for the relocated E9000 compare interrupt.
*/
static int c0_compare_int_pending(void)
{
/* When cpu_has_mips_r2, this checks Cause.TI instead of Cause.IP7 */
return (read_c0_cause() >> cp0_compare_irq_shift) & (1ul << CAUSEB_IP);
}
/*
* Compare interrupt can be routed and latched outside the core,
* so wait up to worst case number of cycle counter ticks for timer interrupt
* changes to propagate to the cause register.
*/
#define COMPARE_INT_SEEN_TICKS 50
int c0_compare_int_usable(void)
{
unsigned int delta;
unsigned int cnt;
#ifdef CONFIG_KVM_GUEST
return 1;
#endif
/*
* IP7 already pending? Try to clear it by acking the timer.
*/
if (c0_compare_int_pending()) {
cnt = read_c0_count();
write_c0_compare(cnt);
back_to_back_c0_hazard();
while (read_c0_count() < (cnt + COMPARE_INT_SEEN_TICKS))
if (!c0_compare_int_pending())
break;
if (c0_compare_int_pending())
return 0;
}
for (delta = 0x10; delta <= 0x400000; delta <<= 1) {
cnt = read_c0_count();
cnt += delta;
write_c0_compare(cnt);
back_to_back_c0_hazard();
if ((int)(read_c0_count() - cnt) < 0)
break;
/* increase delta if the timer was already expired */
}
while ((int)(read_c0_count() - cnt) <= 0)
; /* Wait for expiry */
while (read_c0_count() < (cnt + COMPARE_INT_SEEN_TICKS))
if (c0_compare_int_pending())
break;
if (!c0_compare_int_pending())
return 0;
cnt = read_c0_count();
write_c0_compare(cnt);
back_to_back_c0_hazard();
while (read_c0_count() < (cnt + COMPARE_INT_SEEN_TICKS))
if (!c0_compare_int_pending())
break;
if (c0_compare_int_pending())
return 0;
/*
* Feels like a real count / compare timer.
*/
return 1;
}
int r4k_clockevent_init(void)
{
unsigned int cpu = smp_processor_id();
struct clock_event_device *cd;
unsigned int irq;
if (!cpu_has_counter || !mips_hpt_frequency)
return -ENXIO;
if (!c0_compare_int_usable())
return -ENXIO;
/*
* With vectored interrupts things are getting platform specific.
* get_c0_compare_int is a hook to allow a platform to return the
* interrupt number of it's liking.
*/
irq = MIPS_CPU_IRQ_BASE + cp0_compare_irq;
if (get_c0_compare_int)
irq = get_c0_compare_int();
cd = &per_cpu(mips_clockevent_device, cpu);
cd->name = "MIPS";
cd->features = CLOCK_EVT_FEAT_ONESHOT |
CLOCK_EVT_FEAT_C3STOP |
CLOCK_EVT_FEAT_PERCPU;
clockevent_set_clock(cd, mips_hpt_frequency);
/* Calculate the min / max delta */
cd->max_delta_ns = clockevent_delta2ns(0x7fffffff, cd);
cd->min_delta_ns = clockevent_delta2ns(0x300, cd);
cd->rating = 300;
cd->irq = irq;
cd->cpumask = cpumask_of(cpu);
cd->set_next_event = mips_next_event;
cd->set_mode = mips_set_clock_mode;
cd->event_handler = mips_event_handler;
clockevents_register_device(cd);
if (cp0_timer_irq_installed)
return 0;
cp0_timer_irq_installed = 1;
setup_irq(irq, &c0_compare_irqaction);
return 0;
}
猜你喜欢:
- 我要投稿:发表原创技术文章,收获福利、挚友与行业影响力
- 知识星球:独家 Linux 实战经验与技巧,订阅「Linux知识星球」
- 视频频道:泰晓学院,B 站,发布各类 Linux 视频课
- 开源小店:欢迎光临泰晓科技自营店,购物支持泰晓原创
- 技术交流:Linux 用户技术交流微信群,联系微信号:tinylab
| 支付宝打赏 ¥9.68元 | 微信打赏 ¥9.68元 | |
![]() | ![]() 请作者喝杯咖啡吧 | ![]() |





