
The PREEMPT_RT Approach To Real Time

Wu Zhangjin / Falcon
wuzhangjin@gmail.com

泰晓科技| TinyLab.org
http://tinylab.org

March 21, 2014

The PREEMPT_RT Approach To Real Time March 21, 2014 1 / 51

http://tinylab.org

Overview

1 Introduction
2 What is ‘Real Time’
3 Latency Components
4 PREEMPT_RT approach
5 PREEMPT_RT setup
6 PREEMPT_RT Porting
7 Latency Testing
8 Latency Monitoring
9 Latency Debugging
10 Realtime application development
11 References

The PREEMPT_RT Approach To Real Time March 21, 2014 2 / 51

PREEMPT_RT Project

· From: 2006
· Lanuched by: Ingo Molnar
· Latest versions：v2.6.33.9-rt31, v3.0.1-rt11, 3.12.13-rt21
· Current maintainer: Thomas Gleixner, Peter Zijlstra
· Main Contributors: Thomas Gleixner(Hrtimers), Ingo Molnar(CFS, Threaded interrupt, Perf,

Sleeping spinlock), Steven Rostedt(Ftrace, PI-mutexes, Lockdep), Paul E. McKenney(RCU), Peter

Zijlstra(BKL)

· Web Site: http://rt.wiki.kernel.org
· Download: http://www.kernel.org/pub/linux/kernel/projects/rt/

· Mailing lists: linux-kernel <linux-kernel@vger.kernel.org>, linux-rt-users

<linux-rt-users@vger.kernel.org>

· Online QA Farm: https://www.osadl.org/QA-Farm-Realtime.qa-farm-about.0.html

The PREEMPT_RT Approach To Real Time Introduction March 21, 2014 3 / 51

Real Time System

A real-time system is one in which
· The correctness of the computations

not only depends upon the logical correctness of the
computation
but also upon the time at which the result is produced

· If the timing constraints of the system are not met, system
failure is said to have occurred.

The PREEMPT_RT Approach To Real Time What is ‘Real Time’ March 21, 2014 4 / 51

Application 1 of Real Time System

Figure: Airbag of Car
The PREEMPT_RT Approach To Real Time What is ‘Real Time’ March 21, 2014 5 / 51

Application 2 of Real Time System

Figure: Digital Machine
The PREEMPT_RT Approach To Real Time What is ‘Real Time’ March 21, 2014 6 / 51

Real Time Operating System

· Realtime in operating systems
‘The ability of the operating system to provide a required
level of service in a bounded response time’

· Response time/Latency
‘The time that elapses between a stimulus and the
response to it’

· Bounded
‘real-time is not real-fast’
real-time is about ‘time determinism’

· Jitter
Jitter is the amount of variation in latency/response time, It
reflects the ‘Bounded’ range

· Worst-Case Latency
‘Realtime is about providing guaranteed worst case
latencies for this reaction time’

The PREEMPT_RT Approach To Real Time What is ‘Real Time’ March 21, 2014 7 / 51

Application 1 of Real Time Operating System

Figure: Control System for Airbag of Car
The PREEMPT_RT Approach To Real Time What is ‘Real Time’ March 21, 2014 8 / 51

Application 2 of Real Time Operating System

Figure: Control System for Digital Machine
The PREEMPT_RT Approach To Real Time What is ‘Real Time’ March 21, 2014 9 / 51

Asynchronous Events

Figure: Kernel Latency of Asynchronous Events

kernel latency = interrupt latency + handler duration +
scheduler latency + scheduler duration

The PREEMPT_RT Approach To Real Time Latency Components March 21, 2014 10 / 51

Interrupt Latency

Figure: Interrupt Latency

Time elapsed before executing the interrupt handler.

The PREEMPT_RT Approach To Real Time Latency Components March 21, 2014 11 / 51

Source of Interrupt Latency

Figure: Critical Sections may disable interrupt

· Any sections(e.g. critial sections protected by spinlocks to
prevent concurrency between process context and
interrupt context) disables interrupt may delay the
beginning of interrupt handler.

· Interrupts shared among different priority tasks may delay
the begining of the high priority task’s interrupt handler

The PREEMPT_RT Approach To Real Time Latency Components March 21, 2014 12 / 51

Interrupt Handling

Figure: Interrupt duration

Time taken to execute the interrupt handler.

The PREEMPT_RT Approach To Real Time Latency Components March 21, 2014 13 / 51

Interrupt Handler Implementation

Figure: Interrupt handler = top half + bottom half

· In Linux, many interrupt handlers are split in two parts
A top-half, started by the CPU as soon as interrupt are
enabled. It runs with the interrupt line disabled and is
supposed to complete as quickly as possible.
A bottom-half, scheduled by the top-half, which starts after
all pending top-half have completed their execution.

· Therefore, for real-time critical interrupts, bottom-half
shouldn’t be used: their execution is delayed by all other
interrupts in the system.

The PREEMPT_RT Approach To Real Time Latency Components March 21, 2014 14 / 51

Interrupt Handler Inversion

Figure: Kernel Latency of Interrupt Handler Inversion

In Linux, interrupt handlers are executed directly by the CPU
interrupt mechanisms, and not under control of the Linux
scheduler. Therefore, all interrupt handlers have an higher
priority than all tasks running on the system.

The PREEMPT_RT Approach To Real Time Latency Components March 21, 2014 15 / 51

Scheduler Latency

Figure: Scheduler Latency or Wakeup Latency

Time elapsed before executing the scheduler.

The PREEMPT_RT Approach To Real Time Latency Components March 21, 2014 16 / 51

Kernel Preemption

Figure: Preemption

· The Linux kernel is a preemptive operating system
· When a task runs in userspace mode and gets interrupted

by an interruption, if the interrupt handler wakes up another
task, this task can be scheduled as soon as we return from
the interrupt handler.

The PREEMPT_RT Approach To Real Time Latency Components March 21, 2014 17 / 51

No Kernel Preemption

Figure: No Kernel Preemption

· However, when the interrupt comes while the task is
executing a system call, this system call has to finish
before another task can be scheduled.

· By default, the Linux kernel does not do kernel preemption.
· This means that the time before which the scheduler will

be called to schedule another task is unbounded.
The PREEMPT_RT Approach To Real Time Latency Components March 21, 2014 18 / 51

Source of Scheduler Latency

Figure: Critical sections may disable preemption

· Some critical sections(e.g. protected by spinlocks) disable
preemption.

· Big source code section(e.g. while, for loops) which
doesn’t call schedule() obviously.

The PREEMPT_RT Approach To Real Time Latency Components March 21, 2014 19 / 51

Scheduler Duration

Figure: Scheduler Duration

Time taken to execute the scheduler and switch to the new task.

The PREEMPT_RT Approach To Real Time Latency Components March 21, 2014 20 / 51

Time costed by Scheduler Duration

Figure: Scheduler Duration

· Pick next task: depends on scheduling policy
Time-sharing scheduling or priority based scheduling

· Switch to next task
The time spends on context switch, may include mm switch
and cpu registers/stack switch.

The PREEMPT_RT Approach To Real Time Latency Components March 21, 2014 21 / 51

Process Running

Figure: GNU/Linux System Architecture

The execution determinism is related to lots of parts, especially
Page Fault, Branch Miss, Cache Miss and TLB miss.

The PREEMPT_RT Approach To Real Time Latency Components March 21, 2014 22 / 51

Periodic Task

Figure: Kernel Latency of Periodic Task

The kernel latency of periodic task is also related to the
resolution of timer system.

The PREEMPT_RT Approach To Real Time Latency Components March 21, 2014 23 / 51

Multitask Processing

Figure: Kernel Latency of Sync, Mutex and Communication

The latency of multitasking is more complicated, need to
consider synchronization, mutex and communication among
multi-tasks, their latency should be also determinable.

The PREEMPT_RT Approach To Real Time Latency Components March 21, 2014 24 / 51

Priority Inversion

Figure: Kernel Latency of Priority Inversion

Priority Inversion is a high priority task need wait for a resource
owned by a low priority task.

The PREEMPT_RT Approach To Real Time Latency Components March 21, 2014 25 / 51

Non-determinism Priority Inversion

Figure: Kernel Latency of Non-determinism Priority Inversion

Non-determinism Priority Inversion is a middle priority task
preempt the low priority task above and as a result, the latency
of the high priority task is non-determinable.

The PREEMPT_RT Approach To Real Time Latency Components March 21, 2014 26 / 51

Threaded Interrupt

· To solve the interrupt inversion problem, PREEMPT_RT
has introduced the concept of threaded interrupts

· The interrupt handlers run in normal kernel threads, so
that, the priorities of the different interrupt handlers can be
configured

· The real interrupt handler, as executed by the CPU, is only
in charge of masking the interrupt and waking-up the
corresponding thread

· The idea of threaded interrupts also allows to use sleeping
spinlocks (see later)

The PREEMPT_RT Approach To Real Time PREEMPT_RT approach March 21, 2014 27 / 51

Threaded Interrupt(cont.)

· Merged since 2.6.30, the conversion of interrupt handlers
to threaded interrupts is not automatic: drivers must be
modified

setup_irq(),request_irq() —-> request_threaded_irq()
rc = request_threaded_irq(irq, handler, thread_fn, irqflags, devname,

dev_id);

http://www.kernel.org/doc/htmldocs/genericirq.html

· In PREEMPT_RT, ‘all interrupt handlers’(include top half
and bottem half) are switched to threaded interrupts

SoftIRQ
T Create: spawn_ksoftirqd() –> kthread_create() –> run_ksoftirqd()

T Wakeup: irq_exit() –> do_softirqd() –> wakeup_softirqd()

HardIRQ:
T Create: __setup_irq() –> kthread_create() –> irq_thread()

T Wakeup: do_IRQ() –> handle_IRQ_event() –> wake_up_process()

The PREEMPT_RT Approach To Real Time PREEMPT_RT approach March 21, 2014 28 / 51

Threaded Interrupt(cont.)

Some IRQs can/should not be threaded
· Timers: ‘driver’ of the scheduler should have top priority

struct irqaction c0_compare_irqaction = {
.handler = c0_compare_interrupt,
.flags = IRQF_DISABLED | IRQF_PERCPU | IRQF_TIMER,
.name = "timer",

};

· Unthread short handlers to reduce context-switch
struct irqaction cascade_irqaction = {

.handler = no_action,

.name = "cascade",

.flags = IRQF_NODELAY,
};

· ‘Emergent’ IRQ should be handled immediately
static struct irqaction busirq = {

.name = "bus error",

.flags = IRQF_DISABLED | IRQF_NODELAY,
};

The PREEMPT_RT Approach To Real Time PREEMPT_RT approach March 21, 2014 29 / 51

Threaded Interrupt(cont.)

Unthreaded IRQ handlers must use ‘raw’ spinlocks
· Sleeping locks in interrupt context will block the system
· Raw spinlocks are prefixed by raw_
· Including definition, declaration and helper functions
· Example: i8253 Timer interrupt

static struct irqaction irq0 = {
.handler = timer_interrupt,
.flags = IRQF_DISABLED | IRQF_NOBALANCING | IRQF_TIMER,
.name = "timer"

};
...
-extern spinlock_t i8253_lock;
+extern raw_spinlock_t i8253_lock;
...
-DEFINE_SPINLOCK(i8253_lock);
+DEFINE_RAW_SPINLOCK(i8253_lock);
...
- spin_lock(&i8253_lock);
+ raw_spin_lock(&i8253_lock);
...
- spin_unlock(&i8253_lock);
+ raw_spin_unlock(&i8253_lock);

The PREEMPT_RT Approach To Real Time PREEMPT_RT approach March 21, 2014 30 / 51

No Forced Preemption(Server)

· Kernel code (interrupts, exceptions, system calls) never
preempted.

· Best for systems making intense computations, on which
overall throughput is key.

· Best to reduce task switching to maximize CPU and cache
usage (by reducing context switching).

· Still benefits from some Linux 2.6 improvements, CFS:
O(log n), increased multiprocessor safety (work on RT
preemption was useful to identify hard to find SMP bugs).

· Can also benefit from a lower timer frequency (100 Hz
instead of 250 or 1000).

The PREEMPT_RT Approach To Real Time PREEMPT_RT approach March 21, 2014 31 / 51

Voluntary Kernel Preemption (Desktop)

· Adds explicit rescheduling points throughout kernel code
drivers/char/tty_io.c: do_tty_write():

for (;;) {
...
cond_resched();

}

· May need to break spinlocks
drivers/md/raid5.c: raid5d ():

spin_lock_irq(...);
while (1) {

...
spin_unlock_irq(...);
...
cond_resched();
spin_lock_irq(...);

}
...
spin_unlock_irq(...);

· Minor impact on throughput.

The PREEMPT_RT Approach To Real Time PREEMPT_RT approach March 21, 2014 32 / 51

Preemptible Kernel (Low-Latency Desktop)

· Most kernel code can be involuntarily(forcely) preempted
at any time.

· When a process becomes runnable, no more need to wait
for kernel code to return before running the scheduler.

· A rescheduling point occurs when exiting the outer critical
section.

· Typically for desktop or embedded systems with latency
requirements in the milliseconds range.

· Still a relatively minor impact on throughput.

The PREEMPT_RT Approach To Real Time PREEMPT_RT approach March 21, 2014 33 / 51

Preemptible Kernel (Low-Latency Desktop)(cont.)

Figure: Preempt irq

The PREEMPT_RT Approach To Real Time PREEMPT_RT approach March 21, 2014 34 / 51

Complete Preemption (Real-Time)

· Replaces all kernel spinlocks by mutexes (or so-called
sleeping spinlocks)

· Instead of providing mutual exclusion by disabling
interrupts and preemption, they are just normal locks :
when contention happens, the process is blocked and
another one is selected by the scheduler

· Works well with threaded interrupts, since threads can
block, while usual interrupt handlers could not

· Some core, carefully controlled, kernel spinlocks remain as
normal spinlocks

· With CONFIG_PREEMPT_RT, virtually all kernel code
becomes preemptible: An interrupt can occur at any time,
when returning from the interrupt handler, the woken up
process can start immediately

The PREEMPT_RT Approach To Real Time PREEMPT_RT approach March 21, 2014 35 / 51

Real Time Scheduling Policy

· Linux scheduler support different scheduling classes
· The default class, in which processes are started by

default is a time-sharing class
All processes, regardless of priority, get some CPU time
Their CPU time proportion is dynamic and affected by the
nice value, which ranges from -20 (highest) to 19 (lowest).
Can be set using the nice or renice commands

· The real-time classes SCHED_FIFO and SCHED_RR
The highest priority process gets all the CPU time, until it
blocks.
In SCHED_RR, round-robin scheduling between the
processes of the same priority.
Priorities ranging from 0 (lowest) to 99 (highest)

· Do we need another real-time class? please see
Documentation/scheduler/ and SCHED_DEADLINE:
http://www.evidence.eu.com/content/view/313/390/

The PREEMPT_RT Approach To Real Time PREEMPT_RT approach March 21, 2014 36 / 51

High Resolution Timers

· The resolution of the timers used to be bound to the
resolution of the regular system tick

Usually 100 Hz or 250 Hz, depending on the architecture
and the configuration
A resolution of only 10 ms or 4 ms.
Increasing the regular system tick frequency is not an
option as it would consume too much resources

· The high-resolution timers infrastructure, merged in 2.6.21,
allows to use the available hardware timers to program
interrupts at the right moment.

Hardware timers are multiplexed, so that a single hardware
timer is sufficient to handle a large number of
software-programmed timers.
Usable directly from user-space using the usual timer APIs

· Please get more from Documentation/timers/hrtimers.txt

The PREEMPT_RT Approach To Real Time PREEMPT_RT approach March 21, 2014 37 / 51

High Resolution Timers(cont.)

Figure: Linux Time System With hrtimers

Please see details from “Hrtimers and Beyond”:
http://www.kernel.org/doc/ols/2006/ols2006v1-pages-333-346.pdf

The PREEMPT_RT Approach To Real Time PREEMPT_RT approach March 21, 2014 38 / 51

High Resolution Timers(cont.): Clock Source

· Get timestamp from hardware count registers
arch/mips/kernel/csrc-r4k.c:
static cycle_t c0_hpt_read(struct clocksource *cs)
{

return read_c0_count();
}
static struct clocksource clocksource_mips = {

.name = "MIPS",

.read = c0_hpt_read,

.mask = CLOCKSOURCE_MASK(32),

.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
init_r4k_clocksource(): clocksource_set_clock(&clocksource_mips, mips_hpt_frequency);

· Convert timestamp from cycles to nanoseconds
kernel/time/timekeeping.c: timekeeping_get_ns_raw():

/* read clocksource: */
clock = timekeeper.clock;
cycle_now = clock->read(clock);

/* calculate the delta since the last update_wall_time: */
cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
/* return delta convert to nanoseconds using ntp adjusted mult. */
return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);

arch/mips/kernel/csrc-r4k.c:
static cycle_t c0_hpt_read(struct clocksource *cs)
{

return read_c0_count();
}
static struct clocksource clocksource_mips = {

.name = "MIPS",

.read = c0_hpt_read,

.mask = CLOCKSOURCE_MASK(32),

.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
init_r4k_clocksource(): clocksource_set_clock(&clocksource_mips, mips_hpt_frequency);

The PREEMPT_RT Approach To Real Time PREEMPT_RT approach March 21, 2014 39 / 51

High Resolution Timers(cont.): Clock Events

· Convert delta from nanoseconds to cycles
kernel/time/clockevents.c: clockevents_program_event():

delta = ktime_to_ns(ktime_sub(expires, now));
clc = delta * dev->mult;
clc >>= dev->shift;
return dev->set_next_event((unsigned long) clc, dev);

· Set timer interrupt for the next event
arch/mips/kernel/cevt-r4k.c:
mips_next_event():

unsigned int cnt;
int res;

cnt = read_c0_count();
cnt += delta;
write_c0_compare(cnt);
res = ((int)(read_c0_count() - cnt) > 0) ? -ETIME : 0;
return res;

r4k_clockevent_init():
struct clock_event_device *cd;
cd->name = "MIPS";
cd->features = CLOCK_EVT_FEAT_ONESHOT;
clockevent_set_clock(cd, mips_hpt_frequency);
cd->set_next_event = mips_next_event;

The PREEMPT_RT Approach To Real Time PREEMPT_RT approach March 21, 2014 40 / 51

Priority inheritance

· One classical solution to the priority inversion problem is
called priority inheritance

The idea is that when a task of a low priority holds a lock
requested by an higher priority task, the priority of the first
task gets temporarly raised to the priority of the second
task : it has inherited its priority.

· In Linux, since 2.6.18, mutexes support priority inheritance
· In userspace, priority inheritance must be explicitly

enabled on a per-mutex basis.
· Please get more from Documentation/{rt-mutex-design.txt,

rt-mutex.txt, pi-futex.txt}

The PREEMPT_RT Approach To Real Time PREEMPT_RT approach March 21, 2014 41 / 51

Setting up PREEMPT_RT Kernel

· Check the available -rt patches in
http://www.kernel.org/pub/linux/kernel/projects/rt/

· Download and extract mainline Linux kernel
· Download the corresponding -rt patches
· Apply it to the mainline kernel tree
· Configure CONFIG_PREEMPT_RT and High-resolution

timers
· Compile your kernel, and boot
· Setting appropriate priorities to the interrupt threads and

tasks

The PREEMPT_RT Approach To Real Time PREEMPT_RT setup March 21, 2014 42 / 51

Porting PREEMPT_RT patches

· Check the available -rt patches
· Choose one version is very near the kernel version

supports your board
best to choose the same version
better to choose one support the ARCH of your board

· Analyze the board related parts
· Port them one part by one part

Threaded interrupts: unthreaded and spinlocks
Preemption: Add scheduling points
If require SCHED_DEADLINE, port it
High Resolution Timers: clocksource and clockevents

· Please refer to “Porting RT-preempt to Loongson2F”

The PREEMPT_RT Approach To Real Time PREEMPT_RT Porting March 21, 2014 43 / 51

Testing PREEMPT_RT Kernel

· The most popular test tool: cyclictest
https://rt.wiki.kernel.org/index.php/Cyclictest
cyclictest -l10000 -m p99 -i200 -q

· Build worst case test scenario
https://rt.wiki.kernel.org/index.php/Worstcase_Latency_Test_Scenario

· Plot the testing result
gnuplot

· Test every latency component
Please read “Research and Practice on PreemptRT Patch
of Linux” and
http://dev.lemote.com/cgit/rt4ls.git/tree/tools/rt/interrupt_latency/latency_tracer.c?h=rt/2.6.33/loongson

· More test tools
The realtime testcases under ltp-full testsuite
http://elinux.org/Realtime_Testing_Best_Practices

The PREEMPT_RT Approach To Real Time Latency Testing March 21, 2014 44 / 51

Monitoring PREEMPT_RT Kernel

· Online monitoring and comparing
Use the QA Farm: https://www.osadl.org/?id=864

· Local monitoring
Use cyclictest itself without -q
Use cyclictest + Oscilloscope
Oscilloscope is available from
http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_MRG/1.3/html/Tuna_User_Guide/chap-

Tuna_User_Guide-Using_Testing_Tools_with_TUNA.html

The PREEMPT_RT Approach To Real Time Latency Monitoring March 21, 2014 45 / 51

Latency debugging with Ftrace

· Maintainer: Steven Rostedt, http://people.redhat.com/srostedt

· Implementation
Latency Tracers: Add tracing points manually
Function Tracers: Add tracing points with -pg of gcc

· Tracers
preemptirqsoff: Trace sections disables interrupts and preemption

wakeup: Trace the scheduler/wakeup latency
function: Get more details about kernel actions

· Tools
trace_cmd, http://people.redhat.com/srostedt/trace-cmd-linuxcon-2010.odp

kernelshark, http://people.redhat.com/srostedt/kernelshark/HTML

· Documentations
Documentation/trace/
http://www.omappedia.org/wiki/Installing_and_Using_Ftrace

“Finding Origins of Latencies Using Ftrace”
“Debugging the kernel using Ftrace”

The PREEMPT_RT Approach To Real Time Latency Debugging March 21, 2014 46 / 51

Latency debugging with Perf

· Maintainer: Ingo Molnar
· Predecessor: Oprofile

only cope with hardware performance counters
· Perf is a peformance debugging infrastructure

Trace system performance bottleneck with the hardware
performance counters(Cache Miss, Branch Miss, TLB Miss)
and software performance counters(Page Fault)
A new system call is added for it: sys_perf_event_open()

· tools/perf/Documentation/

The PREEMPT_RT Approach To Real Time Latency Debugging March 21, 2014 47 / 51

Developing Real Time Application

· No special library is needed, the POSIX realtime API is
part of the standard C library

· The glibc or eglibc C libraries are recommended, as the
support of some real-time features is not available yet in
uClibc

Priority inheritance mutexes or NPTL on some
architectures, for example

· Compile a program
ARCH-linux-gcc -o myprog myprog.c -lrt

· To get the documentation of the POSIX API
Install the manpages-posix-dev package and Run man
functioname

The PREEMPT_RT Approach To Real Time Realtime application development March 21, 2014 48 / 51

Developing Real Time Application(cont.)

· Schedule a task with a specific scheduling class and a
specific priority

chrt -f 99 ./myprog
Use the sched_setscheduler() or
pthread_attr_setschedpolicy() API for process and thread
respectively

· Memory locking
In order to solve the non-determinism introduced by virtual
memory, memory can be locked to Guarantee that the
system will keep it allocated and Guarantee that the system
has pre-loaded everything into memory
mlockall(MCL_CURRENT | MCL_FUTURE); Locks all the
memory of the current address space, for currently mapped
pages and pages mapped in the future

The PREEMPT_RT Approach To Real Time Realtime application development March 21, 2014 49 / 51

Developing Real Time Application(cont.)

· PI-Mutexes
Priority inheritance must explictly be activated:
pthread_mutexattr_getprotocol(&attr,
PTHREAD_PRIO_INHERIT);

· Clock and Timers
clock_getres(), clock_nanosleep(), clock_gettime()

· Synchronization, mutex and communication
Not all existing polices guarantee real-time, please test
them before using
pthread_kill/sigwait, pthread_mutex_{unlock,lock} and
semop() are validated in “Research and Practice on
PreemptRT Patch of Linux”

· Real Time Application Example
https://rt.wiki.kernel.org/index.php/HOWTO:_Build_an_RT-application

· Read more from “Posix.4 Programmers Guide:
Programming for the Real World”

The PREEMPT_RT Approach To Real Time Realtime application development March 21, 2014 50 / 51

References

· Internals of the RT Patch, Steven Rostedt
http://www.kernel.org/doc/ols/2007/ols2007v2_pages_161_172.pdf

· Real-Time Linux Wiki
http://rt.wiki.kernel.org

· Download Page
http://www.kernel.org/pub/linux/kernel/projects/rt/

· Git Repository
http://git.kernel.org/?p=linux/kernel/git/tip/linux-2.6-tip.git;a=shortlog;h=rt/2.6.33

· POSIX Standard 1003.1
http://pubs.opengroup.org/onlinepubs/007908799/xsh/realtime.html

· Real time in embedded Linux systems
http://free-electrons.com/docs/realtime/

· http://www.faqs.org/faqs/realtime-computing/faq/
· http://dictionary.reference.com/browse/latency
· Real Time vs. Real Fast: How to Choose?

The PREEMPT_RT Approach To Real Time References March 21, 2014 51 / 51

	Introduction
	What is `Real Time'
	Latency Components
	PREEMPT_RT approach
	PREEMPT_RT setup
	PREEMPT_RT Porting
	Latency Testing
	Latency Monitoring
	Latency Debugging
	Real­time application development
	References

